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In furthering the results obtained earlier in [l, 21 general stability theorems 
using sign-constant Liapunov functions are established for neutral nonlinear 
systems with a deviating argument, Concepts connected with the stability of 
auxiliary difference inequalities play on essential role. The application of 
Liapunov’s methods to the study of the stability of systems of neutral equations 

[S] has been examined in a number of papers [l - 41. A method for studying 
the stability of neutral systems by using only sign-constant but not sign-definite 
Liapunov functionals was proposed in Cl]. This method was used in [Z] to ob- 
tain stability conditions for first-order neutral nonlinear equations, An analog- 
ous method was used in [4] to investigate the stability of solutions of neutral 
equations with a linear neutral part. 

1. Let R* denote an n-dimensional Euclidean space with norm I* I. By C [a, 
b] we denote the space of functions z (a) continuous on [a, b] , x: RI-R”, 
with the norm 

112 Wll = ay2b 13 (4 I 

Let h > 0 be some fixed number and t (t) E c [- h, TJ. By xf we denote an 
element of space C [ - h, 0] of the form 

a+ = xt (0) = x (t + 9), - h 6 8 < 0, t E [O, Tl 

By 8~ we denote a sphere in space C l--h, 01 

SH = (3 (0) E c [- h, 01, 115 (@I/ < ff} 

Let F (t, xJ, F : IO, 00) X Sa * R” 

G (t, xJ, G : [O, 00) X SH * R” 

be two prescribed continuous mappings, where for some H > 0 

IF (6 xt) I < M, t E [o, CQ), St (0) E SH (1.1) 

We consider the following initial problem for the neutral functional-differential 

equation 

dldt ix (t) - G (6 x,)1 = F (6 4, xo (0) = cp (‘3 (1.2) 

For any function cp (0) E C [- h, O] we call x (t) = x (t, cp) a solution of 

problem (1.2) on the interval [O, al, a > 0, if x (t) E C [- h, CZ], x0 (0) = 

cp (0) and the function 

2 (t, zt) = x (t) - G (t, x~) 
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has a continuous derivative satisfying Eq. (1.2) for each t E [O, a]. Everywhere 
below we assume that the solution of problem (I., 2) exists and is unique. To ensure 

this we need to impose some further requirements on G (t, q) and F (t, ~0, in addit- 
ion to the conditions already stated. For example, it is sufficient to assume that G (t, 
Cp) satisfies a local Lipschitx condition with a constant less than one for all functions 

rp (6) and $ (0) such that ‘p (s) ES ?i, (s), - h e s < - E < 0, for some E > 0 and 
that F ft, cp) satisfies a Lipschitz condition in sphere S,. The exact statement of 

the existence an uniqueness theorem for problem (1.2) can be found in [6]. 

Let G (t, 0) s 0 and 8’ (t, 0) s 0. Then Eq, (1.2) has a trivial solution co- 
rresponding to the initial function cp (0) z 0. 

Definition 1. The trivial solution of problem (1.2) is: 
a) stable if for any E > 0 we can find 6 (8) > 0 such that 1 x (t, cp) 1 < 

8 when t > 0, if only 11 tp (0) I] < 6 (8); 
b) asymptotically stable if it is stable and, in addition, 

lim t (t, cp) = 0 
t-tm 

for all ‘p (6) E Q c C I-..&, 01, The domain fz is called the domain of attraction 
of the trivial solution. 

In what follows a large role is played by concepts connected with the stability of 
difference inequalities. Consider the difference inequality 

I 2 (4 YJ I = I Y (t) - G (4 yJ I < f (0, y, = cp (1.3) 

Here f (t) is a nonnegative continuous scalar functron and cp (0) E C [-A, 01. By 
y (t, q) we denote the solution of difference inequality (1.3) with initial condition 

yo=g, l 
Remember that G (t, 0)zO. 

Definition 2. The trivial solution 3 (t) z 0 of difference inequality 

(1.3) is: 
a) f -stable if for any E > 0 we can find 6 (E) > 0 such that I 3 (t, cp) I 

< F for all t > 0 under all initial conditions and right hand sides such that 

II g, (0) II 6 6 (eh ;:y f (0 d 6 (8) (1.4) 

b) asymptotically f-stable if it is f -stable and, in addition, 

;iiJ Y 0, cp) = 0 (1, 5) 

for au fp E Q c c [ -_h, OJ and for every right hand side f (t) such that f (t) -+ 

0 as t-too; 
C) f -bounded if a bounded solution y (t, cp) corresponds to each bounded fun& 

ion f (t). 
Let V (2 (t, xt), zt, t) be some functional, defined and continuous in all argu- 

ments for all xt E SH and t E [O, oo), such that its derivative relative to l?q. 

(1.2) exists. We denote it 

dV dV (2 (t, q, 2t, 4 
dt= at 

Since the derivative dZ (t, z,)/dt exists, while the derivative &/dt- may not exist, 
the ~~irern~t that the derivative &V/&exist imposes definite constraints on the dep- 

endency of V on Xt- By oi (u), wi: RI--f R1, we denote certain continuous 
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nondecreasing functions such that 

Oi (O) = 0; cot (U) > 0, U > 0 
(1,6) 

T h e o r e m 1. Let a functional v (2 (t, a+), ztr t) satisfying the requirem- 
ents stated above exist and be such that 

1) a1 (I 2 (t, s*) 1 ) < v (2 0, 4, % 0 f 02 (II tt @I II) 
2) dV/dt\(O 
3) the trivial solution of difference inequality (1.3) is f--stable. Then the trtv- 

ial solution of Bq. (1.2) is stable, 

P r o o f. We take an arbitrary a, 0 < E < H. By virtue of the f-stability 
of inequality (1.3), for this E we can find 6, > 0 such that every solution of the in- 
equality 

I Z (6 4 I = I 5 VI - G (6 4 I =G f (0, 20 = rp 

will satisfy the relation 

I 5 (4 cp> I < 6 t > 0 
under the conditions that f (t) < a,, t > 0, 11 cp (6) II < aI. We now take 6,, 0 
-C 6-2 < 61, such that co2 (6,) = w1 (6,). Then when 11 cp (0) II < 6, , by virtue 
of conditionsl) and 2) we have 

01 (I 2 (t, 2J I ) < v (2 (6 d, 5t7 t> < 

v (2 (0, cp), cp, 0) < w2 (62) = 01 @I) 

Hence, because of the monotonicity of functron or (u) it follows that 

I 27 (4 4 I = f PI < 61 
Allowing for the f-stability of the difference inequality, we get that 1 z (t, cp) I < 
e, t > 0, for all cp (0) such that II cp (6) II < 6, < 6,. The theorem is proved, 

T h e o r e m 2. Let a functional V (2 (t, q), q, t) satisfying the hypotheses 
of Theorem 1 exist and be such that 

dV (2 (C a47 511 0 / & < -03 (I 2 (6 4 I 1 (1.7) 

Let the trivial solution of difference inequality (1.3) be asymptotically f-stable, Then 

the trivial solution of Eq. (1.2) is asymptotically stable. 

P r o o f. By virtue of Theorem 1 the trivial solution of Bq. (1.2) is stable, Hence 

we can find 6 such that x (t, cp) E SHY t > 0, when cp (0) E S6 , Let us show 
that then 

I 2 (t, 4 I 3 0, t + fm (1.8) 
Let this not be so. Then there would exist a number y, 0 < y (H, and a sequence 
of points ti + 00 such that 

I 2 h xti) I > Y 
by Eq. (1,2) and condition (1.1) we have 

I dz (t, q) / at I = I F (t, 4 I =G M 
when cp E Sb . Hence, 

I 2 @? 4 I > Y / 2 
for T e [ti - y (2M>-l, ti f y (2ikf)-‘] . We denote the number of points ti E 

[O, tl by n (t) . Then because of (1. ‘7) we have 
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- m&z(s,x,)/)ds~ -+3(+)?++--, t--l-~ s 
This,however~ contradicts the fact that the difference 1’ (z (t, z,), +, t) - ‘c7 (Z 

(0, Cp), Cp, 0) is bounded by virtue of condition 1). Hence, we save proved that 
relation (1.8) is valid when cp (6) E S6 . From this, by virtue of the asjmptolic f - 
stability of inequality (1.31, follows the asymptotic stability of the trivial solution of 
Eq. (1.2). Theorem 2 is proved, 

As a corollary of Theorem 2 we establish the following statement, Consider the 
ordinary differential equation 

2’ (6’ = F (6 5 (t)>, .x (to) = x0, to > 0 (1,s) 

Here F: i0, co) X R" -+ A" is a functions continuous in all its arguments, satisfy- 
ing a local Lipschitz condition in the second argument; P (t, 0) s 0. Together wij;2 
Eq. (1.9) consider the neutral ~nctional-diff~ential equation 

dz (t, zt) / dt = F (t. Z (k q)), zo = cp (1. LOI 
z (t, q) = x (t) - G V, 4 

where G (t, S$ satisfies the conditions stated above. 

T h e o r e m 3. Let the trivial solution of Eq. (1.9) be uniformly asymptoticall) 
stable with respect to the initial instant t, and the initial coordinate 5,. Furtner, 
let the trivial solution of difference inequality (1.3) be asymptotically f -stable. Then 
the trivial solution of Eq. (1.10) is ~ymptotically stable. 

P r o o f. By virtue of the inversion theorem [71, for Eq. ( 1.9) there exists a con- 

tinuously differentiable Liapunov function W (t, z) such that 

Wl (I 5 I) < w (k 4 < 02 (I x I) 

We now consider the functional W (t, 2 (t, zJ>. It is easy to see that 

when zt e srr . Therefore, ~nctional W (8, 2 ft, zt)) satisfies all the hypotheses 

of Theorem 2. Allowing for the assumed asymptotic f -stability of hle trivial solut- 

ion of difference inequality (1.3), we get that the trivial solution of the neutral lQ. 

(1.10) is asymptotically stable. Theorem 3 is proved. 
Theorem 4. Let the mapping G (t, So) satisfy the Lipschitz condition 

I G (tl 4 -G&y,) IGalls, -~tll, Oea<l t 1. 11) 
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vq, yt E siq, 0 < t c cJo 

Let a function V (2 (t, x1), q, t) exist, satisfying condition 1) of Theorem 1 and 
such that 

av/at,< -0&x(t) I) ( I. 12) 

Then the trivial solution of Eq. (1. 2) is asymptotically stable. 
P r o of. By virtue of Theorem 1 and Lemma 1, proved below, the trivial solution 

of Eq. (1.2) is stable. Therefore, z (t, cp) E 5’~ for cp (0) E S6. Let us show tnat 
~((t)-+Oas t-too and thus prove the asymptotic stability. Assume the contrary, 

Then a number y > 0 and a sequence of points ti exist such that 1 L (ti) 1 > y. 
From Eq. (1.2) follows 

z(t) = G (t, 4 + i F (s, 5,) ds 

0 

Here we assume that 2 (s) = cp (s) when s < 0. Then, allowing for (1,ll). for 
A > 0 we have 

jz(t + A) - r(t)1 = 1 G(t + A, xt+A) - G (4 st> + (1. 13) 

t+A 

s F (s, 5,) dt 1 d a 11 xt+A - 5t 11 + MA 

t 

We denote 
p (r) = ye y<; I 5 (t + A> - x (0 I 

\ 
From (1.13) follows 

P @I) < a p (rl) + a y;t _r:o I x (0 + A?1) - cp ((3 I + Mrl 
. 

The right-hand side of this inequality tends to zero as 11 + 0 because the function 
5 (0) is uniformly continuous on the closed interval I--h, q] . Hence we can find 
q > 0 such that p (9) < Y/ 2. In this connection, I x (T) 1 > y / 2 for r E 
[ti -?j, ti + ?iJ uniformly over all i . Just as in Theorem 2 a contradiction follows 

at once from this, Theorem 4 is proved. 
Concrete stability conditions in terms of the coefficients of first-order scalar equat- 

ions with distributed and unbounded deviating arguments, which may be looked upon 

as an immediate corollary of Theorem 3, were obtained in [3]. 

2. Let us now consider the question of stability in-the-large of the trivial solution 
of Eq. (1.2). We shall take it that the mappings F (t, a+) and G (6 Zt) are defined 

and continuous on the whole space LO, co) X C [- h, 01. In addition, let 1 F (t, 
zt) I < &f~ for all H > 0, zt E SH and t > 0. We assume as well that the hypo- 

theses of the existence and uniqueness theorem are fulfilled for an arbitrary sphere SH. 
D e f i n i t i o n 3. The trivial solution of Eq. (1.2) is asymptotically stable in- 

the-large if it is stable and the equality 

lim I z (t, cp) 1 = 0 (2. 1) 
t-K0 
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is valid for any initial function cp (0) . 

T h e 0 I e m 5. Let a fumtional v (2 (t, XL>, q,.t) exist, defined and contin- 
uous on the whole space [O, m) X C f- h, OJ and satisfying al the hypotheses of 
Theorem 2 or 4 on the whole space, In addition, let 

01(u)4-00, lL+co (2‘ 21 

and let the trivial solution of difference inequality [ 1.3) be f -bounded. Then the 

trivial solution of E$ (1.2) is asymptotically stable in- the-large. 

P r o o f. The trivial solution of Q. (1.2) is obviously stable. Let us prove that 
the second condition in Deftnition 3 is fulfilled. To do this we show first of all that 

any solution 5 (t, Cp) is bounded. Let 11 cp (8) 11 = K. By virtue of (2.2) we can find 
R > K > 0 such that 

~1 (JO = 02 (li’h wl (N > 02 (R) for u > R 

In this connection, 

i 2 (6 xt ff -+ 0, rp> I < R, t > 0 (2. 3) 

In the contrary case, i. e., when s > 0 exists such that i .?Z (s, s;) f > R, there 
would hold the opposite relation 

Hence, inequality (2.3) has been established. By the assumption of the f-bounded.7 
ness of the sohrtions of inequality (2.3) we get that we can find Q > 0 such that 

I 2 (k cp) I< 4, t > 0 

All the hypotheses of Theorem 2 or 4 are fulfilled in sphere 8, : therefore, relation 

(2.1) is valid. Theorem 5 is established. 

3. Let us set up certain sufficient tests for the f -stability of the trivial solution 

of difference inequality (1.3). 
L e m m a 1. Let mapping G (t, r~r) satisfy Lipschitz condition (1. 11). Then 

the trivial solution of inequality (1.31 is f -stable and f-bounded. 
P r o o f. From inequality (1.3) follows 

1 y (1) I< 1 G (h it) I + f (t) da 11 vt (8) ti + f (t) 

We denote 

Then we obtain 

Hence it follows that 

m U) d SUP f 
oest 

(4 (3.1) 

Inequality (3.1) signifies that the trivial solution of (1.3) is f-stable and f -bounded. 
Lemma 2. Let 

G 0, or) S g (t, y (t - W) 

where g is a function from Rr X R” into R" and h> 0 is some number, Then, 



Stability of neutral systems 

if 

lg(t,Y(t--fi)) I<YYYw-h) It @=Y<l (3*2) 

then the trivial solution of inequality 

I Y ($1 - g (4 Y (t -WI I < f (4 ( 3. 3) 

is asymptotically f-stable. 
P r o o f. From (3.2) and (3.3) follows 

I Y (8 + N I d 1 g 66 Y Wf + f (8 4 N < Y I Y (8) I + f (s + @ (3.4) 

for - hds<O. Analogously, we obtain 

\ y (s -t_ nh) I< y 1 y (s + (n - i) h) 1 + f (s + (n - 1) h) \< Yn 1 b’ @) 1 -+ 
f fs + (n - I) k) + Y f (s + (n - 2) h) + . . . + yn-l f (s + h) 

By virtue of the f -stability of the trivial solution of (3.3) we can obviously find an 
N such that 

Yn I U (4 I .S a/3 for n > K (3.5) 

Further, since f (t) is a bounded function tending to zero, a number m exists such 
that 

fWW+-Y), 
Yrn 

- maxf (t) Q + 
1-Y t&o 

when II & m . But then for n > 2m we have 

f (8 + nh) + * * * +y”-lf(s+h)==f(~+nh)+yf(~i-(n--)h)+ (3. 6) 

. . c + yn-rn+l f (s + mh) + y”‘” [f (s + (m - 1) h) + . . . 

+Ym-l~ts+~)l~~~(~)~ 

(1 ZY)3 
-maxf(f)<+e Yrn 

P-YY)+l-y ** 

Inequalities (3.5) and (3.6) are simultaneously fulfilled when n > max {IV, 2m) , i. e, , 

l~(s+nk)I<ee, -hds<O 

Hence, II Wr (8) II < 8. 
In order to state Lemma 3 we present certain concepts from the theory of almost- 

periodic functions [S]. The spectrum of an almost-periodic function cp (t) is the set 

A (cp) = (3L CE R1: M Vh’q (t)l =#= 0) 

T 

M[$] t: lim +S *(t)dt 
T-m o 

The set 

Mod (Q) = (B m&it hi E A (qP), rrrj are integers, K is a positive integer 
I 

is called the modulus of the almost-periodic function. 
L e m ma 3. Let 

G’ (t, YJ = g (t9 Y @ - h)), g: R1 x R”-tR:, 
I 8 (6 Y (t - h)) I d Y @I I Y tt - h) I, 

h>O 
y (4 > 0. 
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Let the function y (t) either be alm~t-~~odtc and satisfy the conditions 

v (h : h E Mod ($, 2~ # 0) Ihh # 0 (mod 2x)f 

M b y (9) < 0 
or be o-periodic, h be incommensurable with 61 and the inequality 

0 

s lny~~)~~<~ 
Cl 

be valid. Then the trivial solution of inequality (3.3) is asymptotically f -stable and 
f -bounded. 

P r o o f. Consider the operator 

(-4y) 0) = Y (t) I 0 - b) 

As was shown in [9], when the hypotheses of Lemma 3 are fulfilled the spectra radius 

r (A) of operator A is less than unity 

r (A) = lim (11 An ID1”’ < 1 
n-a, 

Hence, for a sufficiently large z 

Yl== IIA5H<P 
But then 

(Ad b-+W-l-f(s+4< . ..d(A’d(s+Wf f(s+lh)+ 
(Af) (s + W + [A’f) (s + W -t- . . . + (A’-%) (s + Zh) = 
(Af~)(s+Z~~+F,(s+Z~:,(y,I~(s)j+F,(s+z~) 

Here we have set 
p1 (s + zh) = f (s + zh) + (Af) (s + Zh) + . . . + (ACrff Cs t ZQ 

where it is evident that pi(t), just as f (t), is a bounded function tending to zero as 
t-+Oo* Denoting Zh = h,, we obtain the inequality 

1 @ is + 4) I < ~1 I Y (4 I + FI (s + MY 0 < PI < * 

completely analogous to inequality (3.4). If now we repeat the end part of the 

proof of Lemmas 1 and 2, we obtain the assertion of Lemma 3. 
Suppose now that mapping G (t, gt) does not depend upon the values of function 

yt (0) when 8 E It - A, ti. Here A, 0 < A<h is a prescribed number, We 

note that in this case we apply the step method for solving difference inequality (1,3), 

L e m m a 4. Let G (t. yt) be independent of the values of gt (61, 0 E [t - 

A,tl e and satisfy Lipschitz condition (1.11). Further, let 

a + a2 + . . . -i- UN= y& 1 (a,3 

Here N is the smallest positive integer such that NA > h. Then the trivial solution 
of inequality (I.. 3) is asymptotically f -stable. 

P r a o f. From relations (1.3) and (1.11) follows the bound 

Further, 
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Analogously we have 

~~~IY(~)I=~llli(~)U~(~+~s+...+~N)IIP(~)~+~s(~) (3.8) 

Fs 0) = t py& f (4 + at_hyF<st (4 + . * * + 
-. . . 

UN max 
t-h+(N-~)A<s#~) 

The function F, (t), just as f (f), is bounded and tends to zero as 14 00. We note 
that inequality (3.8) is similar to inequality (3.4). We can now convince ourselves of 

the validity of Lemma 4’s assertion by repeating the end part of the proof of Lemma 

2. 

N o t e. Condition (3.7), occurring in the statement of Lemma 4, is fulfilled, for 
example, if a < V2. 

4. Examples. 

1”. Consider the equation 

2’. (t) + CX.’ (t - h) + g (5 (t) + cx (t - h)) = 0, h > 0 

Under the conditions that 

ug (u) > 0, u # 0, J c I < 1 

the trivial solution of (4.1) will be stable. We write (4,l) as 
2 (t, xt) = 5 (t) + cz (t - h) 

z’= w, ; = - g (2) 

and we consider the functional 

(4.1) 

(4. 2) 

The derivative of functional (4.2) on the solutions of Eq. (4.1) equals dVldt = w& + 
zig’ (2) = 0. By virtue of Theorem 1 and Lemma 1, all of whose hypotheses are 

fulfilled, the trivial solution of Eq. (4.1) is stable 

2”. Consider the equations 

I” (t) + cp (2 @)) 5. (t) + f (4 = 0 (4.3) 

2” 0, 51) + cp (2 (t, zt)) 2’ (6 21) + f (2 P, 31)) (4.4) 

2 (t, 51) = x (t) + Vs exp (sin t) x (i - i) 

Under the conditions that 

x f (4 > 0, x#O, cp(4>0 

the trivial solution of Eq. (4.3) is uniformly asymptotically stable [lo]. By virtue of 
Theorem 3 and Lemma 3 the trivial solution of Eq. (4.4) too is asymptotically stable. 
Moreover if 

x 

s 
f (s)ds--tco, 121-am 

0 
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then the trivial solution of (4.4) is ~ymptotically stable in-the-large. 
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